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26 ABSTRACT  

Marine  mammals  have  been proposed as ecosystem sentinels due  to their  

conspicuous nature, wide  ranging distribution,  and capacity to respond to changes in 

ecosystem structure  and functioning. In southern  European  Atlantic waters,  their  response  

to climate  variability has been little explored, partly because  of  the inherent  difficulty of 

investigating higher  trophic levels  and  long lifespan animals.  Here,  we  analysed  spatio-

temporal patterns from 1994 to 2018 of one  of the  most  abundant cetaceans  in the area,  

the common dolphin  (Delphinus delphis), in order  to 1) explore  changes in its  abundance  

and distribution,  and 2)  identify the underlying  drivers. For that, we  estimated the density  

of the species and the centre of gravity of its distribution in the Bay of Biscay (BoB) and 

tested the effect of  three  sets  of potential drivers (climate  indices, oceanographic  

conditions,  and prey biomasses) with a  Vector Autoregressive  Spatio Temporal (VAST) 

model that accounts  for  changes in sampling effort resulting from the combination of  

multiple datasets.  Our  results showed that  the common dolphin  significantly increased in 

abundance  in the  BoB  during the study  period. These  changes  were  best explained  by 

climate  indices such as  the North Atlantic  Oscillation (NAO)  and by  prey species 

biomass.  Oceanographic variables such  as  chlorophyll  a  concentration  and temperature  

were  less useful or not related. In addition, we  found  high variability  in the  geographic 

centre  of gravity  of the  species  within the study  region, with shifts  between the  inner  

(southeast) and the outer (northwest) part of  the BoB, although the majority  of this  

variability could not be  attributed to the  drivers  considered  in the  study. Overall, these  

findings indicate that considering temperature  alone for  projecting spatio-temporal  

patterns  of highly mobile  predators  is insufficient in this  region and suggest important  

influences from prey and climate  indices that integrate multiple ecological influences. 
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50 Further integration of existing observational datasets to understand the causes of past 

51 shifts will be important for making accurate projections into the future. 

52 Keywords: common dolphin, spatio-temporal model (VAST), centre of gravity, 

53 cetaceans, climate indices, predator-prey, environmental variability, time series, Bay of 

54 Biscay. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55 INTRODUCTION  

The  global  mean  surface  temperature  has increased by approximately 1º C  from  

pre-industrial levels (IPCC, 2019), triggering  shifts in the abundance, phenology and 

distribution of organisms worldwide (Parmesan  and Yohe, 2003;Poloczanska  et al.,  

2013). Marine  ecosystems, despite  having experienced a  slower warming, show  

comparable  or even greater shift rates  and  vulnerability  than terrestrial systems (Burrows 

et al., 2011;Poloczanska  et al., 2013;Pinsky  et al., 2019), with seagrasses, corals,  

cephalopods  and marine  mammals exhibiting the most  abrupt  changes (Trisos  et al.,  

2020).   

Marine  mammals, as  wide  ranging top predators, amplify trophic information  

across multiple spatiotemporal scales  and can  therefore  act  as sentinels of ecosystems’  

responses  to climate  variability and change  (Hazen et al., 2019). However, assessing 

climate  change  impacts in higher  trophic levels and long lifespan animals  such as marine  

mammals is challenging, as their relationships  to climate  may be  nonlinear  and affected 

by time lags  (Simmonds  and Isaac, 2007;Barlow  et al., 2021).  In addition,  identifying  

spatio-temporal trends  in the context of climate  change  requires analysing data from 

decadal or longer  time series  (Thorson et al., 2016), which are  rarely available for  marine 

mammal observation data.  

Combining data from multiple sampling  programs can help overcome this  

problem (Waggitt et al., 2020;Maureaud et al., 2021), but  also increases  the intrinsic  

variability related  to observers’  skills, sampling design  and protocols,  which may result  

in  confounding  species range  shifts  with variations  in the distribution  and  intensity of the 

sampling effort (Thorson et al., 2016). For that reason, separating the observation process 

from the true  underlying spatial distribution is essential  to accurately identify range  shifts  

over time (Chust  et  al., 2014b)  and to identify potential drivers  (Erauskin-Extramiana  et  
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80 al., 2019b).  Recently, a  species distribution function (SDF) able to distinguish between 

sampling variation and true  geographic variability  has been developed  (Thorson et al.,  

2016). Unlike conventional  estimators such as the abundance-weighted average,  the SDF 

is applied through a  Vector Autoregressive  Spatio  Temporal (VAST) model  that allows  

the estimation of species distribution over predicted  locations rather  than sampled  

locations,  while also estimating a  standard  error  that allows one  to distinguish between 

sampling variation and  significant variability  (Thorson et al., 2016). Although model-

based approaches  had been used  before  to  estimate shifts  in the distribution of species, 

VAST typically involves estimating a  Gaussian Markov random field (GMRF)  

representing latent variation in density that is constant over time  (a  “spatial”  term),  as 

well  as  a  GMRF  representing latent variation that changes among years (a  “spatio-

temporal” term), which  is expected to improve  predictions of species  density and 

distribution compared with using only measured habitat variables  (Thorson, 2019a).  

Until  now,  this  estimator has been mainly applied  to commercially important fish  

stocks (Godefroid et al., 2019;Perretti and Thorson, 2019;Xu et al., 2019),  although  the  

fragmented and methodologically variable nature  of marine  mammal  observations  

suggest the method could  be  highly useful for  analysing the spatio-temporal patterns of  

marine megafauna  too. Within that context, the  Bay of Biscay  (BoB  hereafter),  located  in  

the  Northeast Atlantic,  off  the coasts  of France  and Spain  (Figure  1), represents an 

interesting study  area  since  numerous marine  mammal  species  (e.g.,  cetaceans)  cohabit  

there,  attracted  by a  highly diverse  and abundant community of pelagic  fish species 

(Astarloa et al., 2019;Louzao et al., 2019).  

Such productivity and diversity, however, might be  altered by climate  change  in 

the  near future, as rising temperatures  (0.26ºC  per decade; Costoya  et al., 2015)  are  

expected  to increase  ocean stratification and reduce  primary  production and  zooplankton  
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105 biomass in the area (Chust et al., 2014a).  In recent  years, losses in fisheries production  

have  already been reported  (Free  et al. 2019),  together  with  changes in the  composition,  

distribution,  and phenology of fish  species (Blanchard and Vandermeirsch,  2005;Chust  

et al., 2019;Baudron  et al., 2020).  Cetacean spatio-temporal variability, in contrast,  has 

been mainly  assessed by  exploring changes in their  relative abundance  (Hemery et al., 

2007;Castège  et al., 2013;Authier  et al., 2018), although both abundance  and distribution  

are  considered key criteria  by the European Marine  Strategy Framework Directive  

(MSFD; Directive 2008/56/EC)  aiming  to assess the environmental status of species and 

ecosystems in European Union waters.   

Advancement  of  both  MSFD  criteria  in this region is therefore  necessary, 

especially  when it  is known that projections of climate  change  impacts on cetaceans  at  

large  spatial  scales  (e.g.,  global; MacLeod, 2009)  do  not always  match  with those  at 

regional scales  (Hazen et  al., 2012).  In the Northeast Atlantic, for  example, warm-water  

cetaceans  were  predicted to expand poleward  (MacLeod, 2009;Lambert et al.,  

2011;Lambert et al., 2014), although the south-eastward shift detected for  some Northeast 

Atlantic fish species  in the BoB  could indicate the  opposite pattern  in this particular  area  

(Baudron  et al., 2020). Indeed, some  of the fish species (e.g., horse  mackerel  Trachurus  

trachurus, anchovy  Engraulis encrasicolus  and  sprat  Sprattus sprattus) analysed  by 

Baudron  et al. (2020)  constitute  an important food resource  for  many cetaceans  in the  

BoB  (Meynier  et al., 2008;Spitz  et al.,  2018), which can  heavily influence  the spatial 

movements  of  their  predators (Díaz  López  and Methion, 2019;Díaz  López  et al., 

2019;Giralt Paradell et al., 2019).  

The  hypothesis that climate  change  may  affect  top predators through  climate  

influences on their  ectothermic  prey  has been often suggested  (Robinson et al.,  

2005;Simmonds  and Isaac, 2007;Evans and Waggitt, 2020). Most studies, however,  
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130 examine  environmental conditions  (e.g., temperature) as proxies of prey distribution  

rather  than studying  prey data directly  (Torres et al., 2008;Díaz  López  and Methion,  

2019;Giralt  Paradell  et al., 2019)  while others focus on exploring  the effects of climate  

indices  on the grounds that they act as an integrated measure  of multiple variables (Hallett  

et al., 2004;Hemery et al., 2007). In the  Northeast Atlantic, the  North Atlantic Oscillation 

(NAO) is  the dominant mode of climate  variability,  although additional climate  indices 

such as the  Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EA)  or 

the South Biscay Climate  (SBC) have  been also found to exert strong influence,  direct or 

indirectly, on both fish and cetacean  species  (Guisande  et  al., 2004;Hemery et al.,  

2007;Borja et al., 2008;Evans and Waggitt, 2020)  through changes in ocean  temperature  

and salinity, vertical mixing and circulation patterns  (Drinkwater et al., 2003;Hurrell  and 

Deser, 2009).  

Given the multiple drivers potentially influencing cetacean  spatio-temporal 

patterns, understanding the role  of each of them is key for  a better anticipating  of  future  

responses. For that reason, in this study  we  used  a 25-year-long temporal series  (1994-

2018)  to test the effect of  prey biomasses, oceanographic conditions and climate  indices  

on  the abundance  and distribution of the common dolphin  (Delphinus delphis),  one  of  the 

most  abundant cetaceans  inhabiting the BoB  waters  (Hammond et al., 2017). We  used  the  

Vector Autoregressive  Spatio Temporal (VAST) model  (Thorson and Barnett, 2017)  and 

the spatio-temporal species data compiled by Waggitt et al. (2020)  to  address two main 

research questions:  1) Has the abundance  or the distribution of the common dolphin  in  

the BoB  experienced significant changes over the  last two decades?  and  2) If so, are  

changes best explained by  climatic, oceanographic,  or prey  variables?  By answering 

these  questions, this study intends to provide  insights that will  help understand past and 

future  trends  in the  distribution and abundance  of common dolphin  in the BoB  while  
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155 contributing  to the management  for  this species  through the  development of MSFD  

criteria  in the context of climate change.  
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158 MATERIALS AND METHODS  

Data collection and standardization  

Cetacean data  analysed in this study, despite  focusing  on the BoB,  belong to a  

large  compilation made  by Waggitt et  al. (2020)  that included  observations  collected on  

aerial and vessel (dedicated and opportunistic) surveys conducted in  the  Northeast 

Atlantic between 1980-2018. Although  the data  analysed here  (data providers in  

Supplementary Table  1) is a  more  updated  version that  includes higher-resolution 

tracklines (meaning that fewer data  were  omitted due  to overlap with land-masses and  

more  accurate  measurements of distance  travelled  were  obtained), the steps taken in the 

data processing and standardization stage  were  the  same as in  Waggitt et al. (2020), in  

which they 1) assessed differences in  protocols by grouping data  according to the  a)  

survey transect design (line  transects, strip transects, and an intermediate  method called 

ESAS, European Seabirds At Sea)  and  b)  the platform-type (vessel vs.  aircraft)  and  2)  

fitted detection functions using  platform height  and Beaufort sea-state  as  explanatory  

variables  to estimate  the  proportion of animals missed by the observers  (Marques  and 

Buckland, 2004). They also assessed response  bias (when animals react to the presence  

of the platform)  through double-platform surveys that enabled the detection of animals  

before  responsive  movements. This correction was applicable  to vessel  surveys and is  

particularly relevant to common dolphins,  which typically show a  positive response to  

vessels (Cañadas et al.,  2004). Finally, they calculated the  effective  strip half-width  

(ESW) which  considers the  decline  in the  detection probability as a  function of distance  

and covariates and serves to estimate  the  area  effectively covered  (Area  covered =  

ESW*s*L)  when  including the number  of observation sides (s) and transect length (L).  

Full details can be  found  in Waggitt et al. (2020).  
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183 Spatio-temporal pattern  detection  

Sampling effort  

In order to match with the spatial resolution of the environmental data  that we  

examined in later steps  (see  Main drivers’ identification  section), we  divided larger 

transects into 10 km segments  (García-Barón et al., 2019). Then, we  examined the 

spatiotemporal coverage of surveys by  summing  the effort comprised in all  segments  per  

month and per year. In  addition, we  checked whether  compiling data  had  led  to a  non-

uniform distribution of  sampling in space  and  time  by exploring the  annual latitudinal and 

longitudinal mean distributions  and the corresponding linear regression trends.  

Baseline spatio-temporal model  

Observations of common dolphin  were  analysed  by  means of a  spatio-temporal 

delta-generalised linear mixed model (delta-GLMM), referred to here  as a VAST model  

(Thorson and Barnett,  2017)  and available  in R  (https  ://github.com/james‐

thorson/VAST).  This model  is a  flexible  variant of the classical delta  models  that  

decompose  density into  two components (Stefánsson, 1996):  1) the probability of 

encountering the species at a  given location and time;  and 2) the expected density of the  

species when encountered. This two-part approach, also known as a hurdle  model, helps 

combat statistical problems with zero-inflation and overdispersion in the original data  

(Martin et al., 2005)  and is therefore  suitable for  use  with cetacean  survey data  that usually  

show  patchy distributions  (Waggitt et al., 2020).  

Another feature  of the  VAST model  is  that it decomposes spatio-temporal patterns  

in available point-count data into multiple additive components:  

1.  A temporal main effect (“intercepts”)  representing changes in median abundance  over 

time;  

2.  A spatial main effect (“spatial component”) representing the average  spatial  

distribution during the modelled interval;  
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209 3.  An interaction of space  and time (“spatio-temporal component”) representing 

variation in distribution among years;  

4.  Density covariates, representing the impact of environmental conditions on  expected  

density;  

5.  Catchability (a.k.a. detectability) covariates, representing the impact of environmental 

and/or sampling conditions on expected sampling data, but which do  not reflect 

variation in population density and hence  are  “partialled out” prior  to predicting  

densities.  

Each of these components can be included in each of two linear predictors, and these  

two linear predictors are  then transformed via inverse-link functions to predict the value 

of a  response  variable  (in this case, dolphin samples). Spatial and spatio-temporal 

components are  estimated as a  Gaussian Markov random field (GMRF) and treated as a  

random effect.  To improve computational speed, the value of these GMRFs is predicted 

at a  fixed set of   “knots”  that defines  a  mesh of  triangles that covers  the entire  modelled 

spatial domain.  The  value of the GMRF  at any location within this domain is then 

predicted from the  value  of three  knots  surrounding that location.  We  use  the stochastic  

partial different equation (SPDE) approximation to calculate the probability of GMRFs  

(Lindgren et al., 2011), and the projection from knots  to locations is accomplished using  

bilinear interpolation as computed using  R-INLA  (Lindgren, 2012). The  value of fixed 

effects are  estimated using  maximum  likelihood techniques while integrating across the 

probability of random effects (Kristensen et al., 2016), and standard  errors are  calculated  

using  a  generalization of  the delta  method (Tierney et al., 1989).  For further details,  

please  see  the VAST user manual (https://github.com/James-Thorson-

NOAA/VAST/blob/main/manual/VAST_model_structure.pdf).   
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234 In  our case, we  treated  year as a fixed effect  (default  VAST setting),  such that  

there is no shrinkage in overall abundance across years. We  modelled  spatial  and spatio-

temporal variation as  random effects  to  help account for  multidimensional factors that are  

not included directly in the model but that  can  affect the density and distribution of the  

modelled species  (Carroll  et al., 2019).  In particular, we  estimated first-order  

autocorrelation among years in the  spatio-temporal component, such that predicted  

hotspots in density decay slowly over time; this treatment allows spatio-temporal patterns 

to be predicted (with associated uncertainty) even in locations with sporadic sampling.   

Detectability covariates were  not considered here, because  Beaufort sea-state and  

platform height  were  included in Waggitt et al.  (2020).Density  covariates were  also  

omitted for  our initial investigation of trends  (but see  Main drivers’ identification  

section).  As  a  response  variable,  the  density of common dolphin  was  analysed, after  

truncating the highest 5%  to control outliers  (Buckland et al.,  2001). The  spatio-temporal 

model was fitted  assuming a  lognormal error distribution  and a  Poisson-linked delta  

model such that the sum of both linear predictors is predicted log-density; this structure, 

was selected  based on  the lowest  Akaike Information Criterion (AIC). Model parameters,  

as well as spatio-temporal components, were  estimated  using   200 knots  (Supplementary  

Figure  1)  based on previous studies  that applied  this same resolution  in  bigger  areas  

(Carroll  et al., 2019;Thorson, 2019), while confirming that results are  qualitatively similar  

when increasing the  number  of knots  (Supplementary  Table  2). Species  density was 

predicted at each knot by multiplying the predicted probability of occurrence  by  the  

predicted density. Density estimates for  each knot were  then interpolated to  a  standard 

grid of 0.1  º spatial resolution  (latitudinal range: 43  º–49  ºN; longitudinal range: 1  º–10  

ºW)  to match with the spatial resolution of the environmental data (see  Main drivers’  
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258 identification  section) and  multiplied by  the  area  of the grid cell  to create  annual surfaces  

of common dolphin  abundances  across the BoB.   

The  annual abundances of common dolphin  predicted for  the study  area  were  then  

analysed by means of a  linear regression  to identify significant temporal trends  and  

compared  by means of a  correlation test  with an observed  abundance  index to check 

model fit. The  observed abundance  index was based on the encounter  rate 

(individuals/km) of common dolphin  estimated from monthly at-sea  observations taken  

by a  team of experienced observers in a  constant effort-based systematic  sampling  

scheme, i.e.,  the  Pride  of Bilbao ferry  (Louzao et al., 2015;Robbins  et al., 2020). This 

survey consistently crosses the BoB  using  the same route  every year  (Figure  1), and 

although it  was also used as input  for  the baseline  model, it  only forms  the 8%  of the 

whole  data  set.  Thus,  we  believe  it  can  be  used to compare  the  observed (ferry) and 

predicted (VAST) abundance  indices  and  to  determine  whether the model predictions 

have  been biased by differences in the  effort.   

An additional analysis with predicted abundances  was also conducted to identify 

areas in which significant spatio-temporal changes occurred  over the study  period. For  

that, predicted abundances  per grid cell  were  analysed  as a  function of year by means of  

a  linear regression. The  slope  and  the  p-value  obtained in each cell, as indicators of change  

rate and its significance,  were  then  plotted over the  standard grid  covering the  study  area.  

  Distribution shift metrics  

Shifts in distribution  were  summarized  by calculating the centroid  of the 

distribution for  a  given year  (termed  centre  of gravity, CoG)  after having predicted  the  

density associated with every knot  and year  in the  previous  step. By means of the SDF  

estimator  implemented in the VAST model,  the  CoG was calculated for  the BoB  

population domain  and standardized by  the  total abundance  predicted for  the  study  area, 
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283 so  that  our analysis  focused  on changes in distribution after controlling for  changes in 

total abundance  (Thorson et al., 2016). Shifts  in CoG were  displayed in terms of  

“Eastings”  and  “Northings”,  meaning km  from the  most  western point  of  the  study  area  

and km from the Equator, respectively.  Significant trends were  identified using  a  linear  

regression  against year.  

Identification of main  drivers  

To understand spatio-temporal patterns, three  main  groups of  drivers  were  

analysed  (Table 1), classified into local and regional covariates according to  their  spatio-

temporal structure  (a  local covariate varies across space  while a  regional covariate  is a  

univariate  time series representing the covariate  over the entire  study  area; Thorson, 

2019):  

1) Local oceanographic  conditions  integrated at 100  m  depth,  specifically 

temperature  and chlorophyll  a  concentration  (Chl-a), based on  their  direct relationship 

with climate  change  and their  importance  for  predicting top predators  distribution (Hazen 

et al., 2012;García-Barón et al., 2020).   

2) Regional climate  indices,  specifically  North Atlantic Oscillation  (NAO),  East  

Atlantic Pattern  (EA)  and Atlantic Multidecadal Oscillation  (AMO)  climate  indices  

(details in Table 1), due  to their ability to extract the leading pattern in  weather and 

climate  variability over  the  North Atlantic and their relationship to  cetacean and prey 

populations  (Simmonds and Isaac,  2007;Borja  et al., 2008;Evans et al.,  2010;Evans and 

Waggitt, 2020).   

3) Regional biomasses  of potential prey species, based on the assumption that  

climate  change  will  affect cetaceans  distribution through  changes in their  prey  (Robinson  

et al., 2005;Simmonds and Isaac, 2007;Evans and Waggitt, 2020).  
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307 Temperature  and  Chl-a  values were  sourced  from  the Iberian Biscay Irish  Ocean  

Reanalysis Model available at  the Marine  Environmental Monitoring Systems  

(www.marine.copernicus.eu), providing values at  a 0.08º  spatial resolution,  a  1-month  

temporal resolution and  at 22  discrete  depth intervals  ranging  from  surface  to 100  m 

depth. To test their  effect on the annual estimates predicted by the baseline  spatio-

temporal model, the annual mean of  both temperature  and  Chl-a was  estimated integrating  

the data available  in the  first 100  m of  the water  column  and then  resampled with the 

raster  package  (Hijmans  et al., 2017)  at 0.1º (~10km) resolution  (Waggitt et al., 2020).  

The  three  climate  indices  were downloaded from the National Oceanic and Atmospheric  

Administration  (NOAA) at a  monthly  scale and averaged to obtain annual values  

(www.ncdc.noaa.gov),  while  the biomass of  prey species  was  acquired  from the  

International Council  for  The  Exploration of Seas  (ICES) website  at annual scale  

(https://standardgraphs.ices.dk/).  We  selected prey  species  based on their  relative  

importance  in  the common dolphin’s diet  in the BoB  (Meynier  et al., 2008;Santos et al.,  

2013)  as well as  data  availability and suitability  because  not every potential  prey  species  

(e.g.,  sprat, myctophids)  was available for  the  spatio-temporal scale  defined  in this study. 

European anchovy (Engraulis encrasicolus)  was  the only prey species whose  biomass  

had been estimated exclusively for  the BoB.  Horse  mackerel  (Trachurus trachurus) 

estimates were  for the  Northeast  Atlantic,  Atlantic mackerel  (Scomber scombrus)  and  

blue whiting  (Micromesistius poutassou)  for  the  Northeast Atlantic  and  adjacent waters  

and  sardine  (Sardina pilchardus)  estimates for  the Cantabrian-Atlantic Iberian waters  (for  

information on the extent of stocks see  Table 1). Although there  is an assessment for  the 

sardine  stock  of the BoB,  data were  only available from  2000  onwards  (ICES, 2019c),  so  

we  decided  to  use  the  biomass estimations  from the Cantabrian  sea  and Atlantic  Iberian  

waters  instead  after having checked  that  both  indices  were  highly correlated  (r=0.87)  and 
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332 followed  similar trends (Supplementary Figure  2).  Finally, the biomasses  of all  species 

were  summed and used as a proxy for total prey biomass available in the BoB.  

For modelling purposes,  local  temperature  and Chl-a  variables were  included as 

quadratic  forms in the model to allow for  nonlinear responses (Perretti  and Thorson,  

2019).  Regional climate  indices  were  included as  “spatially varying coefficients”  as in 

Thorson (2019), which  means that instead of estimating a  single  slope  parameter 

presenting the effect of an oceanographic  index on  density, the model  estimates a  separate  

slope parameter for every modelled location  (every knot). The  biomass of each prey  

species, as well  as the total biomass index,  were  first log transformed and then included 

as  spatially varying coefficients since  they were  also available as a  single  regional time-

series.  

As a  preliminary analysis, potential drivers were  correlated with  the abundance  

and CoG of common dolphin  obtained in the previous  baseline  spatio-temporal model. 

Then, covariates-based modelling was performed in  two different ways to identify the  

most parsimonious drivers and to uncover  the relative contribution  of covariates:   

1) Univariate  spatio-temporal models were  fitted for  each variable using  the  same 

configuration as in the  baseline  spatio-temporal  model. Univariate models were  then 

compared with the baseline  model  by means of  the  AIC  (Sakamoto et al., 1986). Only a  

decrease in the AIC  >  2 in relation to the baseline  spatio-temporal  model was considered 

an improvement.  When models differed by  less than 2 units of AIC  (ΔAIC  ≤  2), they were  

considered  statistically equivalent (Arnold,  2010).  The  way  in which  covariates were  

related to the spatio-temporal patterns of common dolphin  was also explored by plotting  

the functional relationships from the model parameters.  

2)  Univariate  models  were  fitted for  each variable after setting the spatio-temporal 

variation (i.e.,  spatio-temporal random effects)  to 0.  This was done  to  remove the  
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357 contribution of random effects and  isolate the effect of the covariates since  in VAST,  

random fields can also account for changes in distribution over time by capturing the  

residual spatial patterns that cannot be  attributed to the fixed effect  (Thorson et al., 2017).  

The  abundances and CoG  obtained from these  models  were  then compared with those  

from the  baseline  spatio-temporal  model to determine  the amount  of variation attributable 

to  covariates.   

RESULTS  

Spatio-temporal patterns  

Sampling effort   

A total of 1728  sightings of  common dolphin  collected in 21  different surveys  

were  analysed (Figure  1, Supplementary Table 1). Those  surveys mainly covered spring-

summer months  and showed a  peak of  maximum  effort between  the  2007-2012  period  

(Supplementary Figure  3).  The  mean latitude  of sampling also varied  and  shifted  

significantly south over time  (p=0.001), while no  significant change was observed in the 

mean longitude of sampling  (Figure  2).  

Common dolphin  

The  common dolphin  abundance  estimated by the baseline  spatio-temporal model  

showed a significant increase  (p<0.001)  throughout the study  period,  accompanied by 

high variability (Figure  3, Supplementary  Table 3). This increase  was most  pronounced 

over the more  recent  years (2011-2017)  and mainly occurred  in the southeast  corner of 

the BoB  (Figure  4).  These  results agreed  with the  ferry data,  which also showed an  

increasing trend and a  significant correlation  (r=0.7,  p=0.003)  with  the predicted 

abundances  (Supplementary Figure  4-5).   

The  CoG  also showed a  high interannual variability,  but no  significant trend was 

found  over time in either of  the two axes  (Figure  5a, b). In contrast,  the  correlation 
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382 between  eastings and northings  showed as  significant pattern  (p=0.005) in the  direction 

of the shift,  indicating  that the distribution of common dolphins  generally varied  between  

the inner (southeast)  and the outer part (northwest) of the  BoB  (Figure  5c).  

Drivers  and covariate contributions  

Neither the  annual temperature  nor  the  Chl-a  concentration  integrated at  100m  

depth  revealed a  significant (p>0.05)  temporal trend across the full  BoB  (Supplementary 

Figure  6). The climate  index AMO  has  remained in a  positive  phase  since  1997,  whereas 

NAO  and EA  indices  have  shown  a  higher variability with alternation  between positive  

and negative  phases (Supplementary Figure  7). Both anchovy and mackerel biomasses  

showed a significant (p≤0.05)  recovery after  a  period of low abundance, while sardine  

and horse  mackerel underwent a  severe  decline  (p≤0.001).  In contrast,  blue  whiting did  

not show any significant  temporal trend  (p=0.2). The  prey  biomass index,  on the other  

hand,  exhibited a significant increase  (p=0.003), despite  the large  variability  

(Supplementary Figure  8).  

The  correlation between the  potential drivers  and the CoG (easting and northings)  

of common dolphin  only showed weak relationships. In contrast, predicted abundance  

revealed several  strong relationships (r>0.5)  with  prey species,  specifically mackerel and 

anchovy (positive  correlation),  and  sardine  and  horse  mackerel (negative  correlation) 

(Figure  6). After prey species, only EA  and NAO climate  indices  showed a  moderate  

correlation  with abundance  (r~0.40).  Blue whiting was not significant  (p>0.05), while  

temperature, Chl-a,  AMO  and the prey biomass index showed weak relationships  (r~0.20)  

(Figure  6).   

For covariates-based  models, the  AIC  score  showed  that the  most  substantial  

decrease  was for  the  NAO index  and regional prey species  biomasses  (especially anchovy  

and sardine).  Local Chl-a  concentration, as well  as horse  mackerel and mackerel, only 
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407 contributed slightly,  while remaining drivers (temperature, AMO,  EA, blue  whiting  and 

prey species biomass index)  were  not  relevant in terms of AIC  (Table  2).  Functional  

relationships  of those important drivers  revealed  positive  responses for  NAO, anchovy, 

mackerel  and negative for  Chl-a,  horse mackerel and sardine (Supplementary Figure  9).  

Similarly, covariate-only  models  (with no  random  effects)  showed  that the  NAO  

index  and prey species  biomasses  were  able  to  explain the increase  in  region-wide  

abundance  of common dolphin (Figure  7).  Chl-a  concentration, despite  having shown  a 

decrease  in AIC  score  (Table 2), did not contribute  to explain the variability in the relative  

abundance  (Figure  7), and neither  did temperature,  AMO  index,  or blue whiting 

(Supplementary Figure  10).  EA  and biomass indices did show  a  higher  contribution in  

terms of variability, but they were  not identified as important drivers according to  AIC  

score  (Supplementary Figure  10).   

In the  case  of  CoG, only Chl-a  and  temperature  contributed to explain the  

observed  variability but, even then, only in a  very small proportion (Figure  8). In fact, the  

variation in the CoG  explained by  these  variables only accounted for  about 10-20  km, 

while the spatio-temporal model suggested variation of  100-300  km.   

DISCUSSION  

The  evaluation of the spatio-temporal patterns of  common dolphin  in  the BoB  

agrees  with the MSFD  aiming  to assess the abundance  and distribution of species  in 

European waters. Surveys providing  information on species distribution and abundance  

in  this region, however,  have  shown significant shifts  in the spatial distribution of 

observations, which make  necessary  the application of  methods such as  VAST to account  

for uneven sampling effort.  
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430 Spatio-temporal trends in  common dolphin  abundance  

The  modelling of common dolphin  sightings revealed a  significant increase  in 

abundance, which is in agreement with previous  studies conducted in the BoB  (Hemery 

et al., 2007;Authier  et al.,  2018;Saavedra  et al., 2018)  and in the wider Northeast Atlantic  

(Hammond et al., 2017;Evans and Waggitt, 2020)  that also reported an increasing trend. 

In addition, data from ferry surveys, known to perform the same route  every year, showed  

the same pattern and  confirmed that the results were  not biased by  the detected latitudinal 

shift in effort.  

In addition, the predicted abundance  estimates were  found to be  quite  coherent  

with those obtained in previous surveys conducted  in  summer 2012 in the BoB  (Laran et 

al., 2017)  and in  summer  2016 in the  Northeast  Atlantic (ICES, 2020), in which 490,000  

(95%  CI: 340,000-720,000) small delphinids (common and striped dolphins)  and 634,000  

(95%  CI: 353,000-1,140,000)  common dolphins  were  estimated, respectively. Although  

it  is not possible to make  a  direct comparison with our predictions,  the ratios for  

common/striped dolphins and Northeast  Atlantic/BoB  estimated from  Hammond et al.  

(2017)  would  lead  to an  approximate abundance  of 360,000 (95%  CI:  250,000-526,000)  

and 425,000 (95%  CI:  237,000-764,000)  individuals  of common dolphin  in the BoB  for  

2012 and 2016,  respectively. These  numbers  were  similar to  our predictions  in those years  

(359,000 ± 49,000 and  376,000  ±  71,500 individuals, respectively; Supplementary Table  

2), and  would indicate  that,  overall, abundance  estimates  from VAST  were  consistent 

with previous  studies. This good agreement is remarkable, given the heterogeneity of the 

data used  in this study  that comprised  21  datasets, and emphasizes the  importance  of  

applying methods that are  robust to shifts  in sampling effort. In addition, the concordance  

between our results and those estimates made  on  summer also suggest that  the spatio-

temporal patterns obtained in this  study  should be  interpreted as spring-summer trends, 
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455 as this was the period of the year when  most  data were  collected  (Supplementary  Figure  

2b).  

The  increasing  trend in abundance  found in this study  for  the BoB,  however,  does 

not necessarily imply an overall  population increase  at the Northeast Atlantic level  (i.e.,  

species whole  distribution range), and instead, could be  due  to the  arrival of individuals  

from unsampled  areas.  That is why the  results found in this study  should  be  treated with  

caution and never  be  used to downplay the effects of incidental capture  on common  

dolphin, especially when recent estimates suggest  that the bycatch in  the BoB  is  

unsustainable  for the population as a whole  (ICES, 2020).   

Regional vs.  locally estimated environmental variables  

Local environmental variables, such as temperature  and Chl-a  used in this study,  

are  often unable  to  capture  complex associations between  environment  and ecological 

process due  to  time lags  in species  responses coupled with the nonlinear intrinsic  nature  

of population dynamics  (Hallett et al., 2004).  

This can be  particularly true  for  Chl-a  and cetaceans species  that feed on 

zooplanktivorous fishes, since  the abundance  of the  latter  has been  related to a  period of 

zooplankton grazing and  a  phytoplankton decay (Díaz  López  et al., 2019).  Under such 

circumstances, many researchers working with cetaceans often apply time-lagged Chl-a 

concentration for  one  and/or two months prior  to the sighting month (Tobeña  et al., 

2016;Prieto et al., 2017;Pérez‐Jorge  et al., 2020;Barlow et al., 2021).  

In this study, however, predictors were  introduced at  an  annual scale to match the 

available temporal scales  of both prey and climatic indices, which prevented  its  

incorporation in a  lagged  phase  and likely led to  the low contribution of Chl-a  in 

explaining the spatio-temporal  patterns of  common  dolphin. Similarly,  the lack  of 

importance  shown  by temperature  could be  also a  consequence  of  this annual resolution 
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480 or  could instead  suggest  that,  within the core  of the  species  range,  temperature  is not such  

an important variable  to explain  its abundance  and distribution.  

On the contrary, regional indices of climate, spanning several months and  

considering wider areas of influence,  are  less disturbed by  local variability and very often  

outperform locally estimated environmental variables  (Hallett et al., 2004). In addition, 

they usually hold information about several environmental factors  (e.g.  temperature, 

storms  and precipitation, mixed layer  depths or  circulation patterns), which make  them  

act as  an integrated measure  of  meteo-oceanographic conditions  that tend to explain more  

of the variability of the system than just, for  example, ocean  temperature  (Hurrell  and 

Deser, 2009;Thorson, 2019).  

The  results found  in this  study  are  a  good example of this, as  the NAO  climate  

index was found  to be  the  best predictor  explaining the abundance  of common dolphin  

according to AIC  scores. Specifically, results showed a  positive  relationship between 

both, meaning that common dolphin abundance  is enhanced during positive  phases of  

NAO, which  are  characterized by colder  and drier conditions  over Mediterranean regions, 

central and southern Europe  (e.g.,  BoB),  and  warmer  and wetter conditions  in northern 

Europe  (Visbeck et al., 2001;Aravena  et al., 2009;Hurrell and Deser, 2009).   

Although the NAO index and similar  climate  indices have  been previously related 

to the abundance  of wide  ranging  predators in the BoB (Hemery et al., 2007;Louzao et 

al., 2015),  responses  are  likely mediated through  the influence  of the  climate indices on  

food resources rather  than directly on higher  trophic predators such as cetaceans 

(Drinkwater et al., 2003;Lusseau et al., 2004). Indeed,  the NAO climatic index has been  

related to some  biologically important phenomena,  such as upwelling (Pérez  et al., 2010), 

river run-off  (Dupuis et al., 2006)  and Ekman transport (Guisande  et al., 2004), which are  

known to influence  the recruitment of some of the main prey species (i.e., anchovy, 
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505 sardine) of common dolphin  (Guisande  et al., 2004;Borja  et al., 2008;Planque  and Buffaz, 

2008).  We  could therefore  hypothesize  a  potential bottom-up process, in  which NAO  

affects common dolphins through its influence  on prey. In  fact, bottom-up control has  

been suggested for  the continental shelf food web of the BoB, where  a  highly diverse  and  

abundant community of forage  fishes  regulates higher  trophic levels (Lassalle et al.,  

2011).  

The role of prey  

 Common dolphins  are  assumed to be  opportunistic predators that  feed on a  wide  

variety of species,  although a  preference  for  energy-rich species, such as  the anchovy, 

sardine, mackerel and horse  mackerel investigated in  this study, has been suggested 

(Meynier  et al., 2008). Atlantic mackerel, however, is only present in  large  quantities  

during the first half  of the  year  in the BoB, coinciding with its spawning period (Uriarte  

and Lucio, 2001), while  Atlantic horse  mackerel and the Iberian  sardine  are  currently in  

serious  decline  (ICES,  2018;2019b). European anchovy, in  contrast,  has  been at  a  

sustainable  level since  2010, with an overall  increasing trend that reached  its maximum  

in 2019 (ICES, 2019a). The  importance  of  prey  species in common dolphin  diet has  been  

found  to be  related to  their  availability in terms of  abundance  (Santos et al., 2004;Meynier  

et al., 2008), which could explain the negative  responses shown by species with low  

abundances (e.g.,  Iberian sardine  and  Atlantic horse  mackerel) and the positive  and larger  

contribution in terms of AIC  made  by those species with higher  abundance  (i.e., European 

anchovy).Blue whiting, on the other  hand, did not seem to be  relevant in explaining  the  

variability of common dolphin over the study  period,  despite  being more  abundant than,  

for  example,  anchovy or mackerel. Evidence  of blue  whiting in the diet of the common 

dolphin  was found in the  BoB  in the 1980s (Desportes, 1985), which could mean that it  

was important in the  past but less so  now, or  that  it  is only important, given its poorer  
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530 energetic  condition  (4.4  kJ g -1),  in the absence  of other  remarkable  prey  species  (Santos 

et al., 2013).  

However,  not all  potential prey species were  included and differences in the 

distribution of stocks may have  also  affected the results. In fact, only anchovy’s biomass  

had been estimated exclusively for  the BoB. Remaining species biomasses were  either  

estimated using  adjacent areas (i.e., Iberian sardine) or distribution areas that extended 

considerably the observations range  of common dolphin (i.e., blue whiting, mackerel and 

in a  lesser extent horse  mackerel), which could have  contributed,  for example, to the  

higher prominence of anchovy  detected in this study.  

Distributional shifts  

The  common dolphin  is considered  a  warm-temperate  species, and  accordingly, 

its range  is expected to expand in response to increasing water temperature  (MacLeod,  

2009). This northward expansion  seems to be  already happening, at least at  the northern  

limit of the species range,  as evidenced by  a  higher  frequency of strandings  and sightings  

in northern Britain and southern Scandinavia  (MacLeod et al., 2005;Evans and Waggitt, 

2020). The  BoB, however, does not constitute a range  edge  within common dolphin’s 

distribution, which can explain why  we  did not find a  northward  shift in its  CoG, but  

instead,  switches  between the inner (i.e.,  southeast) and the outer (i.e.,  northwest) part of  

the BoB.  This pattern has also  been detected  when forecasting the future  distribution  of  

anchovy’s egg density  in the BoB  for  spring (Erauskin-Extramiana  et al., 2019a)  and was  

associated to the contraction (southeast) and  expansion  (northwest)  of anchovy  

population  (Motos et al.,  1996). A prey driven distribution was already  suggested for  

albacore  tuna in the area  (Lezama-Ochoa  et al., 2010), so we could hypothesize  that the  

distributional  shifts  of common dolphins  in the BoB  are  also  driven  by the  distribution of  

their  main prey.  Similarly, the increase  in common dolphin abundance  detected in the  
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555 south-eastern  corner of the  BoB  could be  also related to a  higher  prey availability.  Indeed, 

other  important prey species of the diet of common dolphin (e.g., horse  mackerel, sprat)  

also shifted to the  southeast of  the BoB  in the  past 30 years  (Baudron  et al., 2020).  

However, environmental causes cannot be  discarded, as important environmental changes 

occurred  in the area  during that period (e.g., the deepening of the mixed layer depth, the 

increase  of nutrients, the  increase  of extreme events) that may have  redistributed the 

biodiversity in the BoB  (Chust et al., 2021).  

The  prey  variables  considered in this  study,  however, could  not explain much of 

the observed spatio-temporal  variability  of the CoG  as a  result  of being introduced as a  

biomass index that changed across time but  not across space, and hence, could not  

confirm  or reject the  hypothesized prey-driven  distribution.  Whether  top predator 

abundance  and distribution is driven by the environment or prey is a  much debated 

question in ecology (Grinnell, 1917;Elton, 1927;Torres et al., 2008). However, acquiring 

co-occurring top predator and prey data in space  and time to test  these  hypotheses is  

challenging. In this study, we  have  taken advantage  of a  large  spatio-temporal 

compilation of top predator sightings, but in contrast, we  have  only been able to 

incorporate annual, non-spatial  biomass indices  of prey. Future  work, therefore, should  

focus on improving prey data inputs to better understand their  role  in driving top predator 

distributional  shifts  in the BoB, a  question that  remains  open. Climate  indices, as for prey 

biomasses, were  regional  time-series rather  than spatio-temporal datasets  (i.e., changed 

across time  but not across  space), so  their  effect  on the CoG is  also difficult to understand. 

Local  oceanographic variables  did account for spatio-temporal changes, but even so,  only 

explained  a very small proportion  of spatial shifts, which means that  most  of the 

distributional  shifts  occurred due  to unidentified sources. This inability to attribute  a 

source  to distributional  shifts was also found  in previous  studies with fishes (Thorson  et 
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580 al., 2017;Perretti and Thorson, 2019),  and suggests  that more  effort must be  made  to 

understand when distributional  shifts  can be  attributed to covariates in spatial random 

effects models  (Hodges and Reich, 2010).  

CONCLUSIONS  

Climate  change  is believed to affect marine  mammals through changes  in  their  

physical environment but also  in their  prey. However, many studies aimed at 

understanding climate impacts often employ environmental characteristics as proxies for  

prey distribution. In this study, we  incorporated both environmental and prey variables  

estimated at local and regional scale  and explored the relative importance  of each of them  

in explaining the spatio-temporal variability in common dolphin  data. Although we  could 

not attribute  much of the  detected  distributional  shifts  to the variables considered in this  

study, we  could conclude  that, in the BoB, climate  indices and  prey  species biomasses 

can play an  important role  in driving the abundance  patterns  of the common dolphin.  

Further research on climate  change  effects on common dolphin, however,  should  

focus on comprising the whole  distribution range  of the species, given the  increasingly 

feasible possibility for combining surveys across areas and regions provided by methods 

such as those  used  here. This way, we  could address important knowledge  gaps that have  

not been solved here, for  example, if the increasing trend found  in abundance  is due  to 

the arrival of new individuals or it  is the result  of an  overall  population growth. Answering 

to this question will  undoubtedly help understand population dynamics and bycatch 

implications, but meanwhile, we  reiterate our call  for  caution when interpreting the 

abundance patterns predicted in this study.  
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Table 1. Summary of the local oceanographic, regional climatic and regional prey variables used in this study accompanied by a little description 

and the source from which they were obtained. 

Variable Measure Description Source 

Local 

oceanographic 

Temperature 

Chlorophyll a 

ºC 

Mg/m3 

Mean annual temperature between 0 and 100 m depth 

Mean annual chlorophyll between 0 and 100 m depth 

The Iberian Biscay 

Irish Ocean 

Reanalysis Model 

Regional 

climatic 

NAO 

EA 

AMO 

-

-

-

Both NAO and EA are estimated from the difference of atmospheric pressure 

at sea level between the Icelandic Low and Azores High, but the anomaly 

centres of the EA pattern are displaced southeastward to the approximate nodal 

lines of the NAO pattern 

Average anomalies of sea surface temperatures 

NOAA (National 

Oceanic and 

Atmospheric 

Administration) 

Regional 

prey 

Anchovy 

Sardine 

Mackerel 

Horse mackerel 

Blue whiting 

Tonnes 

Tonnes 

Tonnes 

Tonnes 

Tonnes 

Mean spawning stock biomass in subarea 8 (Bay of Biscay) 

Mean spawning stock biomass in division 8.c and 9.a (Cantabrian Sea and 

Atlantic Iberian waters) 

Mean spawning stock in subareas 1-8 and 14, and in Division 9.a (the 

Northeast Atlantic and adjacent waters) 

Mean spawning stock biomass in Subarea 8 and divisions 2.a, 4.a, 5.b, 6.a, 7.a-

c., and 7.e-k (the Northeast Atlantic) 

Mean spawning stock biomass in subareas 1-9, 12, and 14 (Northeast Atlantic 

and adjacent waters) 

ICES (International 

Council for The 

Exploration of Seas): 

stock assessment 

models 



 

 

       

    

    

       

       

  

 

 

 

 

 

 

 

 

     

     

 
 

    

    

 

 

 

    

    

    

 

 

    

    

    

     

    

    

Table 2. Model terms. Second column refers to the AIC score of each model, while the 

third column refers to the difference in the AIC (ΔAIC) resulting from the comparison of 

each univariate model with the spatio-temporal model (reference model). Positive values 

mean that higher AIC were obtained relative to the baseline spatio-temporal model while 

negative values mean that lower AIC scores were achieved. Numbers in bold mean 

improvement in model fitting (ΔAIC < -2) and hence, substantial contribution of the given 

variable. 

Model AIC ΔAIC 

Baseline spatio-temporal No covariates 27814.85 0 

Local 
Oceanographic Temperature 27820.78 

conditions Chlorophyll 27811.99 

5.93 

-2.86 

NAO 27806.3 
Climate 

EA 27816.38 
indices 

AMO 27817.57 

-8.55 

1.53 

2.72 

Anchovy 27807.76 -7.09 

Regional Sardine 27809.77 -5.08 

Prey Mackerel 27812.81 -2.04 

biomasses Horse mackerel 27812.63 -2.22 

Blue whiting 27816.69 1.84 

Biomass index 27814.12 -0.73 



 

 

     

     

   

   

 

 

 

 

 

Figure 1. Spatial distribution of common dolphin sightings (displayed in segments of up 

to 10 km) over the BoB for the 1994-2018 period. Circle sizes are proportional to group 

size, while solid grey lines indicate the isobaths. Sightings in yellow represent the ferry 

data used to check model fit. 



 

 

           

       

     

Figure 2. Sampling effort (number of segments of up to 10 km) as a function of year and 

longitude (a), and year and latitude (b). In both figures the size of the circle is proportional 

to the sampling effort; the black line indicates the mean value and the dotted line the 

linear temporal trend. 



 

 

       

      

  

 

 

 

 

 

Figure 3. Abundance of common dolphin in the BoB predicted by the baseline spatio-

temporal model with standard deviation (shaded area), the linear trend, and its 

significance. 



 

 

  

      

         

 

 

 

 

Figure 4. Spatio-temporal changes in the abundance of common dolphin (predicted by 

the baseline model) illustrated by means of the change rate (the slope of the linear 

regression). Hatched areas indicate those areas where change rate is not significant 

(p>0.05). 



 

 

       

      

   

Figure 5. The variation in the centre of gravity (CoG) of common dolphin expressed in 

eastings (a) and northings axes (b), and as a function of both (c). Shaded area means the 

standard error, while the dashed line indicates the linear trend. 



 

 

    

  

     

 

 

Figure 6. Pearson correlation among the common dolphin’s predicted abundance, CoG 

and potential drivers. Circle sizes are proportional to the correlation coefficient, which is 

indicated inside the circles. Non-significant correlations (p>0.05) are shown without a 

circle. 



 

 

      

    

    

  

Figure 7. Abundance estimates predicted by the baseline spatio-temporal model (black 

line) and by the covariates-based model (with no random effects, coloured line) so that 

the contribution made by each variable can be visualized. Only drivers identified as 

relevant by AIC score are shown. 



 

 

    

    

 

 

Figure 8. Centre of gravity estimates predicted by the baseline spatio-temporal model 

(black line) and by the temperature and chlorophyll-based models (with no random 

effects, coloured line), expressed in easting (a) and northings (b) axes. 
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